خطا!
انجام عملیات با مشکل مواجه گردید
موفقیت!
انجام عملیات با موفقیت به اتمام رسید
هوش مصنوعی،ai
جمعه - 12 مرداد 1398 - 21:38
موارد مورد استفاده هوش مصنوعی
تعداد خبر ثبت شده : 79
2 0
تعداد بازدید : 73

موارد مورد استفاده هوش مصنوعی:

هوش مصنوعی، تعریف شده به عنوان هوشمندی قابل ملاحظه در ماشین‌ها، کاربردهای بسیاری درجامعه امروزی یافته‌است. دقیق‌تر بگوییم، این هوش مصنوعی ضعیف است که کاربردیست، گونه‌ای که برای انجام وظایف خاص طراحی شده و من جمله رده گسترده فعالیت‌هایی که در آن بکار گرفته می‌شود عبارتند از تشخیص‌های پزشکی، پلتفرم‌های تجارت الکترونیک، کنترل ربات و دورسنجی (remote sensing).

AI یا هوش مصنوعی، برای خلق و توسعه زمینه‌های تخصصی و صنایع بسیاری شامل امور مالی، بهداشت و درمان، آموزش، حمل و نقل و بیش از اینها بکار گرفته شده‌است.

AI برای کمک به انسان :

هوش مصنوعی برای نیکی (به انگلیسی: AI for Good) عنوان نهضتی است که در آن نهادها از هوش مصنوعی برای برطرف ساختن برخی از بزرگترین چالش‌های بشریت بهره می‌جویند. به طورمثال، دانشگاه کالیفرنیای جنوبی «مرکز هوش مصنوعی در جامعه» را براه انداخت تا هدف استفاده ازAI برای پرداختن به مسائل حائز اهمیت اجتماعی مانند بی‌خانمانی را دنبال کند. در استنفورد محققان از AI استفاده می‌کنند تا تصاویر ماهواره‌ای را تحلیل کنند که دریابند کدام نواحی دارای بیشترین سطوح فقرمی‌باشند.

AI مورد استفاده در کشاورزی

در حوزه کشاورزی، پیشرفت‌های جدید هوش مصنوعی، بهبودهایی را در محصول‌برداری و پیشبرد تحقیقات پیرامون پرورش گیاهان به بار آورده‌است. هم‌اکنون هوش مصنوعی نوین می‌تواند زمان رسیده شدن و آمادگی برای برداشت محصولاتی همانند گوجه‌فرنگی را پیش‌بینی کند و بدین نحو بازدهی کشاورزی را بالا برد. پیشرفت‌ها البته بدین‌جا ختم نمی‌شود و دیگر مواردی از قبیل نظارت بر خاک و محصول، ربات‌های کشاورزی و تحلیل داده پیش‌بیننده (predivtive analytics). نظارت بر خاک و محصول از الگوریتم‌های جدید و داده‌ای گردآورده از زمین زراعی بهره‌برداری می‌کند سلامت کشت را تضمین کند و بدین صورت کشاورزی را کم‌هزینه‌تر و پایدارتر سازند.

مثال‌هایی دیگر از AI کارآموخته در کشاورزی را می‌توان مواردی چون اتوماسیون، شبیه‌سازی، مدل‌سازی و تکنیک‌های بهینه‌سازی گلخانه‌ها برشمرد.

درپی فزونی‌یافتن جمعیت و رشد تقاضا برای خوراک در آینده برای تأمین این نیاز به حداقل ۷۰ درصد افزایش باروری کشاورزی می‌باشد. هرروزه قشر بیشتری از عموم بدین باور می‌رسد که بکارگرفتن این تکنیک‌های جدید و استفاده از AI ما را برای رسیدن به آن هدف یاری خواهد داد.

علم کامپیوتر

محققان هوش مصنوعی، ابزارهای زیادی را برای حل سخت‌ترین مسئله‌ها در علم کامپیوتر ساخته‌اند. بسیاری از ابداع‌های آنها به وسیله علم کامپیوتر اقتباس شده و دیگر به عنوان بخشی از هوش مصنوعی درنظر گرفته نمی‌شود. طبق گفته راسل و نووینگ در کتاب هوش مصنوعی منتشر شده در سال ۲۰۰۳، مفاهیمی همچون اشتراک زمانی، زبان‌های تفسیری، رابط کاربر گرافیکی، ماوس، توسعه سریع محیط‌های نرم‌افزار، لیست پیوندی ساختمان داده، مدیریت ذخیره‌سازی خودکار، زبان برنامه‌نویسی نسل سوم، برنامه‌نویسی تابعی، برنامه‌نویسی پویا و برنامه‌نویسی شی گرا، همگی در آزمایشگاه‌های هوش مصنوعی توسعه یافتند.

هوش مصنوعی می‌تواند مورد استفاده قرار گیرد تا به صورت بالقوه، توسعه دهنده‌های باینری را شناسایی کند.

هوش مصنوعی می‌تواند برای ساخت دیگر انواع هوش مصنوعی مورد استفاده قرار گیرد. برای مثال، در حوالی نوامبر ۲۰۱۷، گوگل در پروژه AutoMl، تپولوژی‌های جدیدی از شبکه‌های عصبی را ایجاد کرد به نام شبکه‌های عصبی NAS، سیستمی بهینه‌سازی شده برای پروژه ایمیج نت و COCO. به گفته گوگل، عملکرد شبکه‌های عصبی NAS فراتر بود از تمام عملکردهای پیشین منتشر شده از ایمیج نت .

تحصیلات

آینده هوش مصنوعی در کلاس‌های درس

آیدنده هوش مصنوعی در کلاس‌های درس، خیلی درخشان به نظر می‌رسد. یکی از هیجان انگیزترین نوآوری‌ها، ایده معلم یا دستار هوش مصنوعی شخصی برای هر دانش آموز منحصر به فرد است. از آنجا که یک معلم به تنهایی نمی‌تواند با تمام دانشجویان در یک زمان کار کند، معلم‌های هوش مصنوعی بهدانش آموزان این اجازه را می‌دهند که کمک‌های فردی بیشتری را در زمینه‌هایی که به آن نیاز دارند، دریافت نمایند. آموزگاران هوش مصنوعی همچنین ایده‌های دلهره آور آزمایشگاه‌های آموزشی یا آموزگاران انسانی را که ممکن است باعث استرس و اضطراب برای بعضی دانش آموزان شود را از بین می‌برد. در کلاس‌های درس آینده، مبحث اطلاع‌رسانی محیطی می‌تواند نقش سودمندی را ایفا کند. اطلاع‌رسانی محیطی ایده ای است که در آن اطلاعات در همه جا در محیط اطراف وجود دارد و وسایل تکنولوژی به صورت خودکار بر اساس اولیت‌های شخصی شما تنظیم می‌شود. وقتی دانش اموزان بر روی میزهایشان می‌نشینند، وسایل آنها قادر خواهند بود که درس، مشکلات و بازی‌هایی را بسازند تا برای نیازهای خاص هر دانش آموز مناسب باشند، مخصوصاً در جایی که یک دانش آموز ممکن است در حال دست و پنجه نرم کردن باشد و این برنامه، یک فیدبک فوری را می‌فرستد. این برنامه ایده این که «یک روش برای کل کلاس مناسب است» را از بین می‌برد. زیرا ما دیگر مجبور نیستیم که دانش آموزان را وادار کنیم تا دقیقاً یک ماده درسی یکسان را با یک سرعت دقیقاً یکسان یاد بگیرند. با اینکه فواید بسیاری در استفاده از هوش مصنوعی در کلاس درس وجود دارد، اما همچنین خطرات متعددی وجود دارد که قبل از پیاده‌سازی هوش مصنوعی باید در نظر گرفته شوند.

در مورد آینده هوش مصنوعی در آموزش، بر اساس آنچه که بوسیله روزنامه نیویوک تایمز به عنوان «بیداری بزرگ هوش مصنوعی» چاپ شده‌است، احتمالات جدید زیادی وجود دارد. یکی از این احتمالات که توسط روزنامه فوربز ذکر شده‌است، شامل تهیهٔ برنامه‌های یادگیری تطبیقی است که احساسات و اولویت‌های یادگیری دانش آموز را ارزیابی می‌کند و به آنها واکنش نشان می‌دهد. پیشرفت دیگر شامل ارائه داده‌های عملکرد و روش‌های غنی سازی به صورت فردی است. در برنامه درسی، هوش مصنوعی می‌تواند به تعیین اینکه آیا در متون و دستورالعمل‌های پیش فرض وجود دارد یا خیر، کمک کند. برای معلمان، هوش مصنوعی به زودی می‌تواند اطلاعات را در رابطه با اثربخشی مداخلات آموزشی مختلف از یک پایگاه اطلاعاتی بالقوه جهانی ارسال کند. به‌طور کلی، هوش مصنوعی توانایی تأثیرگذاری بر آموزش را با در نظر گرفتن داده‌های منطقه ای، ایالتی، ملی و جهانی در نظر بگیرد، زیرا هدف از آن ایجاد تعادل در یادگیری برای همه افراد است. اگر چه هوش مصنوعی می‌تواند دارایی‌های زیادی را در یک کلاس درس فراهم کند، بسیاری از متخصصان هنوز نمی‌پذیرند که می‌توانند جایگزین معلم شوند.

بسیاری از معلمان ترس از جایگزین شدن AI به جای آنها در کلاس را دارند مخصوصاً با ایده جدید AI که دستیار شخصی برای هر دانش آموز ایجاد می‌کند. واقعیت این است که AI می‌تواند محیط زیست را توسط اثرات غیرعمدی به مکانی بدتر تبدیل کند؛ و این به معنای این است که این تکنولوژی مانع پیشرفت جامعه وباعث اثرات ناخواسته و منفی بر جامعه می‌شود. از جمله این اثرات ناخواسته استفاده بیش از حد از تکنولوژی است که مانع تمرکز دانش اموزان به جای یادگیری و پیشرفت می‌شود. همچنین AI منجر به از دست دادن قابلیت اراده و تفکر شخصی انسان‌ها و همزمانی می‌شود. اگر دانش اموزان صرفاً به معلمان AI، که از الگوریتم‌ها و سیم‌ها تشکیل شده‌است، تکیه کنند آنها توانایی شان را برای کنترل تحصیلات و یادگیری از دست خواهند داد. همچنین اگر ما از دستیار AI برای ساخت دروس دانش اموزان هر روز استفاده کنیم با توجه به اینکه تکنولوژی‌های AI باید همزمان کار کنند ممکن است خرابی سیستمی منجر به خرابی کل یک مدرسه بشود. اینکه AI در کلاس‌ها در سال‌های اتی استفاده شود اجتناب ناپذیر است بنابراین ضروری است که روی این نواوری‌های جدید کار شود قبل از اینکه معلمان تصمیم بگیرند ان را در برنامه روزانه خود قرار دهند.

مالی

تجارت الگوریتمی

معامله الگوریتم‌ها تشکیل شده از استفاده از الگوریتم پیچیده AI تا تصمیم‌های تجارتی را چندین برابر سرعتی که انسان در روز می‌تواند انجام دهد را بگیرد. غالباً میلیون‌ها دادوستد بدون هیچ دخالت انسانی را انجام می‌دهد. چنین معاملاتی معاملات فرکانس بالا نامیده می‌شود و نشان دهنده یکی از سریعترین بخش‌های در حال رشد در معاملات مالی است. بسیاری از بانک‌ها و منابع مالی و تجارت‌های اختصاصی شرکت‌ها الان اوراق بهاداری دارند که کاملاً و فقط توسط سیستم‌های AI سازماندهی می‌شوند. سیستم‌های تجارت اتوماتیک معمولاً توسط سرمایه گذاران بزرگ سازمانی استفاده می‌شود. اما در سال‌های اخیر شاهد هجوم شرکت‌های کوچک و خصوصی با سیستم‌های AI خودشان بوده‌ایم.

چندین سازمان بزرگ مالی روی سیستم‌های AI سرمایه‌گذاری کرده‌اند تا در سرمایه‌گذاری کمکشان کنند. موتورAI Black Rock وعلادین هردو داخل شرکت و مشتریان برای کمک به تصمیم‌های مالی استفاده می‌شود. آن شامل طیف گسترده از قابلیت‌ها و همچنین قابلیت پردازش زبان طبیعی تا برای خواندن اخبار گزارش دلال‌ها و رسانه‌های اجتماعی استفاده شود. سپس تمایل خود را به شرکت‌هایی که ذکر شدند می‌سنجد و به آنها امتیاز می‌دهد. بانک‌هایی مانند UBS و Deutsche از موتوری استفاده می‌کند که Sqreem)مدل کاهش و استخراج کوانتمی) که می‌تواند به گسترش پروفایل مصرف‌کنندگان و یافتن محصولات مالی که آنها می‌خواهند از داده‌ها (داده کاوی) به دست آورد. گلدمن ساکس از «کنشو» استفاده می‌کند که برنامه (پلتفرم) تجزیه و تحلیل بازار است که هر دو قابلیت محاسبات حجیم اماری و پردازش زبان طبیعی را داراست. این سیستم‌های یادگیری ماشین داده‌ها را از طریق داده‌های موجود در وب و ارزیابی ارتباط بین رویدادهای جهانی و تأثیر ان بر قیمت دارایی‌ها به دست می‌آورد. استخراج اطلاعات بخشی از هوش مصنوعی است که برای استخراج اطلاعات از اخبار زنده خبری وکمک به تصمیمات سرمایه‌گذاری استفاده می‌شود.

امور مالی شخصی

محصولات متعددی در حال ظهور هستند که از AI برای کمک به مردم در امور شخصی خود استفاده می‌کنند. برای مثال Digit یه نرم‌افزار طراحی شده توسط هوش مصنوعی است که به مصرف‌کنندگان کمک می‌کند تا مصرف و پس‌انداز خود را بر اساس عادات و اهداف شخصی خود بهینه کنند. این نرم‌افزار می‌تواند فاکتورهایی مانند درآمد ماهانه، موجودی فعلی و خرج‌های عادتی) خرج‌هایی که تکرار می‌شود) را تجزیه و تحیل کند و سپس می‌تواند تصمیم‌های خود را بگیرد و پول را به حساب‌های پس‌انداز منتقل کند. Wallet.AI یک استارتاپ در San Francisco که به زودی خواهد آمد عواملی ایجاد کرده‌است که داده‌هایی مانند چیزهایی که مصرف‌کنندگان پشت سر گذشته از جمله چک کردن گوشی هوشمند از اینستاگرام تا توییتر تجزیه تحلیل کند تا به اطلاع مصرف‌کنندگان رفتار مصرفی آنها را برساند.

مدیریت دارایی‌ها

مشاوران روبو در حال حاضر به‌طور گسترده در صنعت مدیریت سرمایه استفاده می‌شود. مشاوران روبو مشاوره مالی و مدیریت دارایی‌ها با حداقل مداخلهٔ انسانی را ارایه می‌کنند. این نمونه از مشاوران مالی براساس الگوریتم‌هایی ساخته شده‌است که به‌طور خودکار دارایی مالی را با توجه به اهداف سرمایه‌گذاری و تحمل ریسک مشتریان ایجاد می‌کنند. آن (مشاوران روبو) می‌تواند بر اساس تغییرات انی در بازار تنظیم شود و به اقتضای ان دارایی‌ها را تنظیم کند.

امضای اسناد

یک وام دهنده آنلاین، Upstart، اطلاعات زیادی از مصرف‌کننده را تجزیه و تحلیل می‌کند و از الگوریتم‌های یادگیری ماشین استفاده می‌کند که مدل‌های مالی ریسک که میزان احتمال انرا به‌طور معمول پیش‌بینی می‌کند، ایجاد کند. این تکنولوژی برای بانک‌ها مجاز خواهد بود که آنها را برای استفاده از فرایندهای حقوقی خود (امضا کردن) نیز مورد استفاده قرار دهند.

ZestFinance پلتفورم Zest Automated Machine Learning را ایجاد کرده‌است که مخصوص امضای اسناد مالی است. این پلتفورم از یادگیری ماشین استفاده می‌کند تا ده‌ها هزار متغیر قدیمی و جدید (از معاملات مالی تا اینکه چگونه مشتری یک فرم را پر می‌کند) که در امور مالی استفاده می‌شود تا به وام گیرندگان امتیاز دهد. این پلتفورم مخصوص نمره دادن به افراد با پیشینه اعتبار محدود است مانند هزاره‌ها.

منابع انسانی و استخدام

کاربرد دیگر هوش مصنوعی در منابع انسانی و استخدام فضا است. سه راه وجود دارد که هوش مصنوعی توسط منابع انسانی و استخدام حرفه ای‌ها مورد استفاده قرار می‌گیرد: برای نمایش رزومه‌ها و رتبه‌بندی نامزدها با توجه به سطح صلاحیتشان، پیش‌بینی موفقیت نامزدی در نقش‌های خاص از طریق پلتفرم‌ها (سکوها) ی مطابق با شغل، و در حال حاضر راه اندازی ربات‌های چت استخدام است که می‌توانند وظایف ارتباطی تکراری را خودکار کند.

به‌طور معمول، بازنویسی رزومه شامل یک استخدام کننده یا دیگر نمایش حرفه ای منابع انسانی از طریق یک پایگاه داده از رزومه‌ها می‌شود. در حال حاضر راه اندازی‌های جدید مثل Pomato در حال ایجاد الگوریتم‌های یادگیری ماشین برای خودکار کردن فرایندهای نمایش رزومه است. هوش مصنوعی نمایش رزومه Pomato روی خودکار کردن اعتبار سنجی متقاضیان فنی برای شرکت‌های خدمات فنی تمرکز می‌کند. هوش مصنوعی Pomato بیش از ۲۰۰۰۰۰ محاسبات را در هر رزومه در ثانیه انجام می‌دهد و سپس یک مصاحبه فنی سفارشی بر اساس مهارت‌های استخراج شده طراحی می‌کند. راه حل‌های KE، که در سال ۲۰۱۴ تأسیس شده‌است، سیستم‌های توصیه شده برای رتبه‌بندی شغل‌ها برای نامزدها، و رتبه‌بندی رزومه‌ها برای کارفرمایان را توسعه داده‌است. Jobster.io، که توسط راه حل هایKE توسعه یافته، از جستجوی مبتنی بر مفهوم استفاده می‌کند که دقت را ۸۰٪ در مقایسه با روش سنتی ATS افزایش داده‌است. این به کارکنان کمک می‌کند تا بر موانع فنی غلبه کنند.

از سال ۲۰۱۶ تا سال ۲۰۱۷، شرکت کالاهای مصرفی Unilever از هوش مصنوعی برای نمایش همه کارکنان در سطح ابتدایی استفاده کرد. هوش مصنوعی Unilever از بازی‌های مبتنی بر علوم اعصاب، مصاحبه‌های ضبط شده، و تجزیه و تحلیل صورت و گفتار برای پیش‌بینی موفقیت استخدام استفاده کرد. Unilever با Hirevue و Pymetrics همکاری کرد تا غربالگری مبتنی بر هوش مصنوعی خود را فعال کند و متقاضیان خود را در یک سال از ۱۵۰۰۰ به ۳۰۰۰۰ افزایش داد. استخدام با هوش مصنوعی تولید شده Unilever " متنوع‌ترین کلاس تا به امروز است ".Unilever همچنین زمان استخدام را از ۴ ماه به ۳ هفته و نیم کاهش داد و ۵۰۰۰۰ ساعت زمان استخدام را نجات داد.

بیمارستان‌ها و دارو

شبکه عصبی مصنوعی به عنوان سیستم پشتیبانی بالینی تصمیمی برای تشخیص پزشکی استفاده می‌شود، مانند تکنولوژی پردازش مفهوم در نرم‌افزار EMR.

وظایف دیگر در پزشکی که به‌طور بالقوه توسط هوش مصنوعی انجام می‌شود و شروع به توسعه می‌کنند عبارتند از:

  • تفسیر کامپیوتری از تصاویر پزشکی. چنین سیستمی به اسکن تصاویر دیجیتالی، از جمله از طریق توموگرافی رایانه ای، برای نمایش‌های معمول و به منظور برجسته بخش‌های قابل توجه مانند بیماری‌های ممکن است. یک برنامه معمول تشخیص تومور است.
  • تجزیه و تحلیل صدا قلب
  • روبات‌های همراه برای مراقبت از سالمندان
  • استخراج معادن پزشکی برای ارائه اطلاعات مفیدتر.
  • طرح‌های درمان طراحی
  • کمک در مشاغل تکراری از جمله مدیریت دارو.
  • ارائه مشاوره.
  • ایجاد مواد مخدر
  • استفاده از تصاویر به جای بیماران برای آموزش بالینی
  • پیش‌بینی احتمال مرگ از روش‌های جراحی
  • پیش‌بینی پیشرفت HIV

بیش از ۹۰ راه اندازی AI در صنعت بهداشت و درمان در این زمینه وجود دارد.

اولین راه حل IDx, IDx-DR، اولین سیستم تشخیصی مستقل مبتنی بر AI است که مجوز تجاری توسط FDA مجاز است.

هوانوردی

گروهان عملیات‌های هوایی(AOD) ارتش ایالات متحده AIرا برای ساخت سیستم‌های متخصص(expert systems) قانون‌محور بکارمیبندد. AI برای AOD کاربست‌هایی دارد اعم از در نقش متصدی جانشین در شبیه‌سازهای تمرینی و پیکار، دستیار مدیریت مأموریت، سامانه‌های پشتیبان برای تصمیم‌گیری‌های تاکتیکی و پس‌پردازش داده‌های شبیه‌ساز و تبدیلشان به خلاصه‌نامه‌های سمبولیک.

کاربست AI در شبیه‌سازها برای AODبسیار مفید نموده‌است. شبیه‌سازهای هواپیما برای پردازش داده‌های حاصل از پروازهای شبیه‌سازی شده از AI بهره می‌گیرند. به غیر از پرواز شبیه‌سازی شده، مورد رویارویی شبیه‌سازی شدهٔ هواگردها (aircrafts) نیز هست. رایانه‌ها علاوه بر اینکه قادرند تا بهترین سناریوهای پیروزی را در این شرایط تولید نمایند؛ می‌توانند استراتژی‌هایی مبنی بر قرارگیری، ابعاد، سرعت و قدرت نیروهای حمله و ضد حمله طرح کنند. رایانه‌ها می‌توانند درحین درگیری خلبانان را یاری رسانند. هوش مصنوعی نه تنها در توان دارد که اطلاعات را دسته‌بندی کرده و بهترین مانورها را در اختیار خلبان قرار دهد بلکه مانورهای خارج از عهده انسان را نیز کنار می‌گذارد. برای دستیابی به تقریب‌هایی مناسب از برخی محاسبات، داده‌های پرواز چندین هواگرد لازمند که ایجاب می‌کند خلبان‌های شبیه‌سازی شده مورد استفاده قرار گیرند. این خلبان‌های شبیه‌سازی شده همچنین برای تمرین دادن کنترل‌کننده‌های ترافیک هوایی آینده کاربردی‌اند.

سیستمی که به وسیله AOD به منظور اندازه‌گیری عملکرد استفاده می‌شد، یک سیستم IFDIS (سیستم تشخیص خطای متقابل و ایزوله) بود. این یک سیستم کارشناس مبتنی بر قواعد است که داده‌ها را از اسناد TF-30 و از نظر کارشناسانه مهندسان مکانیکی که بر روی TF-30 کار می‌کنند، جمع‌آوری می‌کند. این سیستم طراحی شد تا برای توسعه TF-30 به RAAF F-111C استفاده شود. سیستم عملکرد نیز برای جایگزین کردن کارگران تخصصی استفاده شد. این سیستم به کارگران معمولی اجازه می‌داد که با سیستم ارتباط برقرار کنند و از اشتباهات و اشتباهات محاسباتی یا صجبت با کارگران تخصصی اجتناب کنند.

AOD همچنین از هوش مصنوعی در نرم‌افزار بازشناسی گفتار استفاده می‌کند. مراقبان پرواز جهت‌ها و مسیرها را به خلبانان مصنوعی می‌دهند و AOD می‌خواهد که خلبانان پاسخ‌های ساده به مراقبت پرواز دهند. برنامه‌هایی که نرم‌افزار گفتار را می‌سازند باید آموزش داده شوند به این معنا که از شبکه عصبیاستفاده کنند. برنامه Verbex 7000 که استفاده شد، هنوز یک برنامه ابتدایی هست که جای زیادی برای پیشرفت دارد. این پیشرفت‌ها الزامی هستند زیرا مراقبان پرواز از گفتگوی بسیار ویژه ای استفاده می‌کند و برنامه نیاز دارد که قادر به برقراری ارتباط صحیح و فوری در هر زمان باشد.

هوش مصنوعی ای که طراحی هواپیما را پشتیبانی می‌کند (یا همان AIDA) برای کمک به طراحان در پروسه طراحی مصور هواپیما استفاده می‌شود. نرم‌افزار همچنین به کاربر اجازه می‌دهد تمرکز کمتری بر روی ابزار نرم‌افزار داشته باشد. AIDA از یک سیستم مبتنی بر قواعد برا محاسبه داده‌هایش استفاده می‌کند. این یک دیاگرام از آرایش مد. ل‌های AIDA است. اگرچه ساده است، برنامه اثبات کرده که مؤثر است.

در سال ۲۰۰۳، مرکز تحقیقات پروازی آرمسترانگ ناسا، و بسیاری از شرکت‌های دیگر، نرم‌افزاری طراحی کردند که قادر می‌سازد یک هواپیما آسیب دیده، به پروازش ادامه دهد تا زمانی که به منطقه امن برای فرود دست یابد. برنامه با تیکه بر اجزای آسیب ندیده، تمام قسمت‌های آسیب دیده را تعدیل می‌کند. شبکه عصبی استفاده شده در نرم‌افزار، اثبات کرده که مؤثر است و یک پیروزی برای هوش مصنوعی به حساب می‌آید.

سیستم یکپارچه مدیریت سلامت دستگاه که به وسیله ناسا بر روی هواپیما استفاده می‌شود، باید داده‌های دریافت شده از سنسورهای تعبیه شده در هواپیما را، پردازش و تفسیر کند.

سیستم باید بتواند یکپارچگی ساختاری هواپیما را تعیین کند.

این سیستم همچنین نیاز به پیاده‌سازی پروتوکل‌ها در صورت هر گونه آسیب ناشی از وسیله نقلیه دارد.

هیثمن بائومر و پیتر بنتلی هدایت یک تیم از کالج لندن را بر عهده دارند تا یک هوش مصنوعی بر پایه سیستم خلبان اتوماتیک هوشمند(IAS) طراحی شده را، توسعه دهند تا به سیستم خلبان اتوماتیک آموزش دهد که همچون یک خلبان بسیار با تجربه که با یک وضعیت اورژانسی مانند آب و هوای بد، آشَفتگی یا نقص سیستم رو به رو است، رفتار کند. آموزش خلبان اتوماتیک بر پایه مفهوم یادگیری ماشین تحت نظارت، استوار است به این صورت که با خلبان جوان مانند یک کارآموز انسان که به مدرسه پرواز رفته‌است رفتار می‌کند. خلبان اتوماتیک حرکات خلبان انسان را ضبط می‌کند و الگوهای یادگیری را به کمک استفاده از هوش مصنوعی تولید می‌کند. سپس به خلبان اتوماتیک کنترل کامل داده می‌شود و خلبان، اجرای تمرینات آموزشی به وسیله خلبان اتوماتیک را ملاحظه می‌کند.

سیستم خلبان اتوماتیک هوشمند، اصول دوره کارآموزی را به همراه روش‌های دیگری ترکیب می‌کند. روش‌هایی که به وسیله آنها، خلبان حرکات سطح پایینی که برای حرکت دادن هواپیما نیاز است را مشاهده می‌کند و استراتژی سطح بالایی برای به کار بردن آن حرکات استفاده می‌کند. پیاده‌سازی سیستم خلبان اتوماتیک (IAS) فازهای زیر را به کار می‌برد: جمع‌آوری داده‌های خلبان، آموزش و کنترل مستقل و خودمختار. هدف بائومر و بتینی، ساخت یک خلبان اتوماتیک خودمختارتر است تا به خلبانان در پاسخ به شرایط اورژانسی کمک کنند.

 

تهیه شده در تیروز